5,232 research outputs found

    Detection of radio-frequency modulated optical signals by two and three terminal microwave devices

    Get PDF
    An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed

    Design Criteria for Fracture Assessment of Pressurized Nuclear Components

    Get PDF
    This paper presents the design criteria adopted for fracture assessment of pressurized components of nuclear power plants. Although there are wide variety of components in a typical nuclear power plant, the thrust in this paper is on components which are part of the primary heat transport system. The paper presents an overview of design rules, practices adopted and experimental verification needed for ensuring the structural integrity of nuclear pressure vessels and piping

    Analysis of Microstrip Lines with Alternative Implementation of Conductors and Superconductors

    Get PDF
    An analysis of microstrip line structures in which either the strip or the ground plane or both are made of a high Tc superconductor is presented. The effect of implementation of a superconductor to the strip and the ground plane is explained with the calculation of a conductor loss of the structure by the Phenomenological Loss Equivalence Method (PEM). The theoretical values are compared with the experimental results from a ring resonator which is made of a gold ground plane and a high Tc superconductor, YBa2Cu3O(7-x), strip

    Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    Get PDF
    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range

    Co(II) Complexes of Pyridine-2-aldoxime & 6-Methylpyridine-2-aldoxime

    Get PDF
    1018-101

    Low cycle fatigue and cyclic plasticity bahaviour of Indian PHWR / AHWR primary piping materials

    Get PDF
    The integrity assessment of the primary piping components needs to be demonstrated under normal operation cyclic loadings as well as under complex cycling loadings of extreme magnitude as may come during a severe earthquake event. In order to understand material's cyclic plasticity and fatigue ratcheting behaviour, systematic experimental and analytical investigations have been carried out on specimens of SA333Gr.6 carbon steel and SS304LN stainless steel. The materials specification of SA333Gr.6 is same as used in Primary Heat transport (PHT) piping of Pressurized Heavy Water Reactors (PHWRs) and materials specification of SS304LN steel is same as proposed for Indian Advanced Heavy Water Recactor (AHWRs) Main Heat Transport (MHT) piping. The test program included the properties and cyclic plasticity behaviour. The results of these tests have been investigated in detals using few popular finite element cyclic plasticity models to understand and quantify the materials' cyclic plasticity behaviour. The studies revealed the need to modify the Chaboche model to simulate the LCF/cyclic plasticity and ratcheting under different stress/strain amplitude loading conditions. On accounting for modification, the Chaboche model nicely predicted the LCF and ratcheting response for all the tests. The tests, finite element analyses results and their interpretations have been presented in this paper

    C-band superconductor/semiconductor hybrid field-effect transistor amplifier on a LaAlO3 substrate

    Get PDF
    A single-stage C-band superconductor/semiconductor hybrid field-effect transistor amplifier was designed, fabricated, and tested at 77 K. The large area (1 inch x 0.5 inches) high temperature superconducting Tl-Ba-Ca-Cu-O (TBCCO) thin film was rf magnetron sputtered onto a LaAlO3 substrate. The film had a transition temperature of about 92 K after it was patterned and etched. The amplifier showed a gain of 6 dB and a 3 dB bandwidth of 100 MHz centered at 7.9 GHz. An identical gold amplifier circuit was tested at 77 K, and these results are compared with those from the hybrid amplifier

    Cyclic plastic deformation behaviour of PHT piping materials - an experimental investigation

    Get PDF
    The work presents the cyclic plastic deformation behaviour of two varieties of primary heat transport piping materials to understand the hardening/softening behaviour, load history memory, strain range effect, mean stress effect and ratcheting behaviour. Microstructural changes during cyclic deformation manifest in cyclic expansion of yield that could be used to explain the hardening/softening behaviour. Both the materials memories the prior history, however, the effect disappears after some time. Both the steels exhibit non-Masing behaviour due to inhomogeneous substructural changes. Non-Masing behaviour could be explained through cyclic expansion of yield. Engineering stress controlled ratcheting experiments were noted to be inadequate and under predict the ratcheting fatigue life. Importance of true stress controlled ratcheting experiments were discussed
    corecore